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ABSTRACT
BACKGROUND: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and global
brain differences compared with noncarriers. However, interpreting regional differences is challenging if a global
difference drives the regional brain differences. Intraindividual variability measures can be used to test for regional
differences beyond global differences in brain structure.
METHODS:Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n =
30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matched
noncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual’s
regional difference and global difference, were used to test for regional differences that diverge from the global
difference.
RESULTS: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, pos-
terior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differed
more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness
in regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal and
somatosensory cortex differed more than the global difference in cortical thickness.
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CONCLUSIONS: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal
and 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distal
and 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanisms
involved in altered neurodevelopment.

https://doi.org/10.1016/j.biopsych.2023.08.018
Carriers of certain rare recurrent copy number variants
(CNVs), i.e., deletions or duplications of a segment of the
genome, have a higher risk of developing psychiatric and
neurodevelopmental disorders, including schizophrenia and
autism spectrum disorder (1–5). Several rare recurrent CNVs
have moderate to large effects on structural brain measures
derived from magnetic resonance imaging (MRI) (6,7). The
effects of CNVs on brain structure have been suggested to
occur primarily during early neurodevelopment (8), and
some rare recurrent CNVs have been associated with
altered cellular function, composition, and size derived from
cortical organoids that model fetal and early neuro-
development (9–12). The 1q21.1 distal and 15q11.2 BP1-
BP2 deletions are two of the most common recurrent
CNVs (1,13,14). They yield a higher risk of psychiatric and
neurodevelopmental disorders (1–5) and show moderate to
large effects on brain structure (15,16). Thus, studying
1q21.1 distal and 15q11.2 BP1-BP2 deletion carriers offers
a promising genetics-first approach to study deviations in
neurodevelopment and brain structure, which may underlie
the increased risk of developing psychiatric and neuro-
developmental disorders (5,8).

To date, neuroimaging studies on CNVs have focused on
conventional mean comparisons between carriers and non-
carriers, which have been informative for brain profiling of
CNV carriers. For instance, several CNVs have shown global
effects on the brain, as demonstrated by group differences in
mean cortical thickness, total cortical surface area, and total
subcortical volume, in addition to widespread regional dif-
ferences (6,7). However, brain profiling may be challenging if
an overall global difference in the brain drives many of the
regional mean differences or if regional differences are driven
by distinct subgroups in each comparison, rendering inter-
regional brain profiles difficult to interpret. To overcome this
challenge, detecting brain regions that diverge from the
global difference could benefit from intraindividual variability
measures, in which regional values represent the relative
position within an individualized brain profile. Identification of
brain regions that diverge from the overall global difference
of the CNV may provide valuable insights into the regional
penetrance, brain organization, and functional consequences
in CNV carriers. Indeed, as has been demonstrated in other
fields, such as cognitive science and neuropsychology
(17–22), novel scientific and clinical insights can be achieved
by looking beyond mean group differences through investi-
gating intraindividual variability.

Both 1q21.1 distal and 15q11.2 BP1-BP2 deletion carriers
exhibit global differences in brain structure, with the former
displaying a lower total cortical surface area (15) and the latter
showing a higher mean cortical thickness and lower total
Biological Psychiatry January 15, 2024; 95:147–160 www.sobp.or
cortical surface area (16). Additionally, these deletions exhibit
regional differences across the cortex (15,16). However, the
regional differences vary across the brain as indicated by
variation in effect sizes across brain regions. This could indi-
cate that the carriers of the 1q21.1 distal and 15q11.2 BP1-
BP2 deletions exhibit higher variability in brain structure,
along with systematic interregional differences in brain struc-
ture as measured by MRI-derived features.

In both 1q21.1 distal and 15q11.2 BP1-BP2 CNV carriers,
the largest regional differences are typically found in frontal
regions, associated with higher cognitive processing. In
contrast, the posterior brain regions, associated with primary
sensory processing, typically do not show significant differ-
ences (15,16). Insight into variation in brain structure may be
useful for understanding differences in brain function, as
cortical morphology overlaps with the functional hierarchical
gradient of the brain (23). This functional hierarchical gradient
reflects a sensorimotor (i.e., involved in unimodal and func-
tional specific processes) to association (i.e., involved in
higher-order cognitive processes) axis in the human brain
(23–25), which has been supported by anatomical, functional,
and evolutionary data (24). Thus, a more fine-grained brain
profile of the structural differences in 1q21.1 distal and
15q11.2 BP1-BP2 CNV carriers may aid understanding of their
phenotypic profile.

Brain structural differences in 1q21.1 distal and 15q11.2
BP1-BP2 CNV carriers indicate global mean differences (i.e.,
cortical thickness and cortical surface area) as well as
regional group differences in primarily frontal brain regions.
The regional group differences indicate that some brain re-
gions are more affected than others. Here, we define more
affected brain regions as regions that differ more than the
global mean difference and less affected brain regions as
regions that differ less than the global mean difference. To
measure this, we used an intraindividual variability measure
to detect brain regions that diverge from the global differ-
ence, where the regional values represent its position within
an individualized brain profile. We expected that anterior
regions within the association cortices would be more
affected, whereas posterior regions within the primary
sensorimotor cortices would be less affected in carriers of
the 1q21.1 distal and 15q11.2 BP1-BP2 CNVs.
METHODS AND MATERIALS

Sample

Individuals carrying a 1q21.1 distal or 15q11.2 CNV and a
matched noncarrier group were obtained from the Enhancing
NeuroImaging Genetics through Meta Analysis (ENIGMA) CNV
g/journal
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Working Group core dataset and the UK Biobank across 61
scanner sites. Each CNV carrier was matched with 5 non-
carriers based on age, sex, scanner site, and intracranial vol-
ume using the MatchIt package in R (26). This resulted in 4
subsets (sample characteristics are presented in Tables 1 and
2; see also Note 1 in Supplement 1).

MRI-Derived Features, CNVs, and Quality Control

Neuroimaging data were obtained from the UK Biobank, as
described elsewhere (27), and from the ENIGMA-CNV core
dataset. The ENIGMA-CNV neuroimaging measures were
collected from several sites (see Appendix 1 in Supplement 2
for details) and analyzed using the standardized ENIGMA
protocol (https://enigma.ini.usc.edu/protocols/imaging-
protocols/). Details of the quality control of MRI are pro-
vided in Note 2 in Supplement 1. Briefly, the MRI data from
the ENIGMA-CNV Working Group were subjected to the
ENIGMA cortical quality control procedures (https://enigma.
ini.usc.edu/protocols/imaging-protocols/), where the 68
cortical and 14 subcortical regions were extracted using the
Desikan-Killiany atlas. For the UK Biobank sample, we used
the Euler number as a proxy for image quality (28) and
removed all participants with Euler numbers below minus 4
standard deviations from downstream analyses (n = 437). To
account for site effects in the samples, we ran each of the 4
subsets through ComBat, an instrument for data harmoni-
zation (29). CNV calling in ENIGMA-CNV was based on
previous publications (15,16). For the UK Biobank sample,
we identified CNVs based on the returned dataset from
Crawford et al. (30). All participants with a CNV as defined in
previous publications (15,16,30) were removed from down-
stream analyses except for the individuals flagged with the
1q21.1 distal or the 15q11.2 BP1-BP2 CNV.

Derivation of Dependent Variables

We adjusted for the effect of age, age2, sex, and intracranial
volume on every brain regional value using linear regression
across the carriers and the noncarriers. The residualized brain
regional values were used to calculate the mean and standard
deviation for the noncarriers only. We estimated 1) z scores per
region [similar calculations as in (31)] and created 2) global index
and 3) intraindividual standard deviation [similar calculations as
in (21)] as well as 4) regional intra-deviation (RID) score.

z Scores. Specifically, z scores for CNV carriers and
noncarriers were calculated based on the mean and
Table 1. Sample Characteristics for 1q21.1 Distal CNVs and No

1q21.1 Distal
Deletion, n = 30

1q21.1 Distal Del
Comparison Group,

Age, Years, Mean 41.6 44.6

Age, Years, Range 7.7–68.7 9.2–76.2

Females, n (%) 14 (46.7%) 73 (48.7%)

Intracranial Volume,
mm3 3 106, Mean (SD)

1.25 (0.23) 1.26 (0.25)

CNV, copy number variant.
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standard deviation from the noncarriers as shown in
equation 1:

Zif ¼ ðXif2Mif Þ
SDif

(1)

where Zif is the standardized value for brain region i using
feature f (i.e., cortical thickness, surface area, or subcor-
tical volume), Xif is the regional value for brain region i for
feature f, and Mif and SDif represent the mean and standard
deviation, respectively, for brain region i using feature f
across the noncarriers. Thus, for every individual, we ob-
tained a vector of standardized z scores across 68 cortical
regions for cortical thickness and cortical surface area and
14 subcortical regions.

Global Index. We created an individualized global index for
cortical thickness, cortical surface area, and subcortical vol-
ume, respectively, by calculating the mean z score across the
cortical and subcortical regions as shown in equation 2:

GIf ¼ 1
nf

Xnf
i¼1

Zif (2)

where GIf is the global index for feature f, n is the total number
of brain regions for feature f, and Zif is the standardized value
for the brain region I for feature f derived from equation 1.

Intraindividual Standard Deviation. We also calculated
the intraindividual standard deviation across the z scores for
cortical thickness, cortical surface area, and subcortical vol-
ume to obtain measures of within-individual variability, as
shown in equation 3:

iSDf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pnf
i¼1

ðZif2GIf Þ2

nf21

vuuut
(3)

where iSDf is the intraindividual standard deviation for feature
f, nf is total number of brain regions for feature f, Zif is the
standardized value for brain region i for feature f, and GIf is
the global index for feature f (i.e., mean z score across brain
regions for an individual) as derived from equation 2. A low
intraindividual standard deviation indicates that an in-
dividual’s z scores across brain regions are relatively
consistent and do not vary much across brain regions, while
ncarrier Comparison Groups

etion
n = 150

1q21.1 Distal
Duplication, n = 27

1q21.1 Distal Duplication
Comparison Group, n = 135

56.4 53.7

18.7–73.1 9.5–77.2

15 (55.6%) 77 (57.0%)

1.59 (0.16) 1.56 (0.30)
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Table 2. Sample Characteristics for 15q11.2 BP1-BP2 CNVs and Noncarrier Comparison Groups

15q11.2 BP1-BP2
Deletion, n = 170

15q11.2 BP1-BP2 Deletion
Comparison Group, n = 850

15q11.2 BP1-BP2
Duplication, n = 243

15q11.2 BP1-BP2 Duplication
Comparison Group, n = 1215

Age, Years, Mean 55.9 55.9 55.8 55.9

Age, Years, Range 7.1–77.7 6.8–90.0 7.83–88.5 3.75–89.8

Females, n (%) 90 (52.9%) 428 (50.4%) 127 (52.3%) 608 (50.0%)

Intracranial Volume,
mm3 3 106, Mean (SD)

1.48 (0.20) 1.50 (0.20) 1.46 (0.19) 1.46 (0.20)

CNV, copy number variant.
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a high intraindividual standard deviation indicates that the z
scores across brain regions are relatively inconsistent,
indexing a more variable brain.

Regional Intra-deviation Score. Finally, to identify re-
gions that diverge more than expected from an individual’s
global index and intraindividual standard deviation, we created
an RID score calculated using equation 4 for every brain region
across feature f:

RIDif ¼ ðZif2GIf Þ
iSDf

(4)

where RIDif is the RID score for brain region i using feature f, Zif

is the standardized value for brain region i for feature f, and GIf
is the global index for feature f as shown in equation 2. The
iSDf reflects the intraindividual standard deviation for the z
score across brain regions in feature f as formulated in
equation 3. Here, we define regions that are less affected as
those that do not follow the global tendency in the data,
whereas the regions that exceed the global tendency of the
data are considered to be more affected. To establish brain-
cognition relationships between the brain measures and
cognition, we tested for associations between RID and z
scores and cognitive ability (Note 3 and Figure S1 in
Supplement 1; Table S1).

Statistical Analyses

All statistical analyses were conducted in Rstudio (R version
4.0.0; https://www.R-project.org/), and brain visualizations
were created using the ENIGMA toolbox (32). For the per-CNV
analyses, we tested for group differences by including carrier
status (i.e., either carrier or noncarrier) in a linear regression
model. The deletion and duplication carriers were tested sepa-
rately with their corresponding matched noncarrier group used
as the reference. The estimated standardized beta values were
extracted from the models and are presented in the results as a
measure of effect size. The p values underwent a false discovery
rate (FDR) (33) adjustment to account for multiple comparisons
for each of the 4 CNV groups. Corrected p values , .05 were
considered statistically significant. Three main analyses were
performed: First, in line with the conventional mass-univariate
analysis approach, we performed group comparisons on the z
scores across all the regions of interest (ROIs) for cortical
thickness, cortical surface area, and subcortical volume (FDR
corrected for 150 comparisons). Second, we compared the
global index and intraindividual standard deviation and mean
corrected intraindividual standard deviation values between
150 Biological Psychiatry January 15, 2024; 95:147–160 www.sobp.or
carriers and noncarriers (FDR corrected for 12 comparisons).
The mean corrected intraindividual standard deviation repre-
sents the intraindividual standard deviation after regressing out
the global index, as the mean values tend to be correlated with
the standard deviation. Third, for the RID scores, group com-
parisons were computed between carriers and noncarriers for all
ROIs for cortical thickness, cortical surface area, and subcortical
volume (FDR corrected for 150 comparisons). Due to missing
values in some brain regions, the analyses were restricted to
individuals with complete observations for the feature that was
analyzed (i.e., cortical thickness, cortical surface area, and
subcortical volume). Sensitivity analyses were conducted for the
significant RID score differences by adjusting for affection sta-
tus (i.e., known psychiatric or neurological diagnoses). In addi-
tion, we examined the interaction term between carrier status
and affection status and between carrier status and cognitive
ability. Finally, we compared the brain profile of significant dif-
ferences in RID scores with the significant differences in z
scores adjusted for the global index.

RESULTS

Global Measures

The group differences in the global index and the intra-
individual standard deviation measures are presented in
Table 3 with reference values for the noncarrier groups in
Table S2. The 1q21.1 distal deletion carriers had a lower global
index for surface area, whereas the 15q11.2 BP1-BP2 deletion
carriers had a lower global index for surface area and a higher
global index for cortical thickness. In addition, the 15q11.2
BP1-BP2 duplication carriers had a lower global index for
cortical thickness. Furthermore, there was a higher intra-
individual standard deviation for cortical surface for both the
1q21.1 distal duplication carriers (both for the mean corrected
measure and for the uncorrected measure) and the 15q11.2
BP1-BP2 deletion carriers (only for the mean corrected mea-
sure) as well as a higher intraindividual standard deviation for
cortical thickness in the 15q11.2 BP1-BP2 deletion carriers
(both for the mean corrected measure and for the uncorrected
measure). With one exception, correlations between the
intraindividual standard deviation measures across CNV
groups did not show any significant differences (Note 4 and
Figure S2 in Supplement 1).

1q21.1 Distal CNV

1q21.1. Distal Deletion. The 1q21.1. distal deletion car-
riers showed widespread lower cortical surface area with sig-
nificant differences in 63 ROIs using z scores (Figure 1A, B,
g/journal
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Table 3. Group Differences in Global Index and Intraindividual Standard Deviation

1q21.1 Distal Deletion 1q21.1 Distal Duplication 15q11.2 BP1-BP2 Deletion 15q11.2 BP1-BP2 Duplication

Global Index

Cortical surface area 21.29 (0.18)d 0.40 (0.22) 20.22 (0.09)b 20.09 (0.07)

Cortical thickness 0.39 (0.21) 20.04 (0.22) 0.35 (0.09)d 20.24 (0.07)b

Subcortical volume 20.15 (0.20) 20.48 (0.22)a 20.17 (0.09)a 0.02 (0.07)

Intraindividual Standard Deviation, Mean Uncorrected

Cortical surface area 20.20 (0.21) 0.73 (0.22)c 0.15 (0.09) 20.02 (0.07)

Cortical thickness 0.37 (0.21) 0.44 (0.22)a 0.20 (0.09)b 0.00 (0.07)

Subcortical volume 20.08 (0.20) 0.22 (0.22) 0.04 (0.09) 0.02 (0.07)

Intraindividual Standard Deviation, Mean Corrected

Cortical surface area 0.24 (0.21) 0.62 (0.22)b 0.23 (0.09)b 0.06 (0.07)

Cortical thickness 0.37 (0.21) 0.46 (0.22)a 0.19 (0.08)b 0.00 (0.07)

Subcortical volume 20.06 (0.20) 0.30 (0.22) 0.08 (0.09) 0.02 (0.07)

Values represent the standardized beta coefficient between carriers and noncarriers, with noncarriers as the reference. Standard error is presented in parentheses.
pFDR, false discovery rate–corrected p.
ap , .05
bpFDR , .05
cpFDR , .01
dpFDR , .001.
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top; Table S3) and exhibited a higher RID score for cortical
surface area in regions within the occipital, superior parietal,
temporal pole, and posterior cingulate cortex as well as lower
RID scores in regions within the superior temporal and frontal
regions (Figure 1A–C, bottom; Table S4). Further, 1q21.1 distal
deletion carriers showed higher cortical thickness compared
with noncarriers in 19 ROIs using z scores (Figure 2A, B, top;
Table S3), in addition to lower RID scores for regions within the
occipital lobe and paracentral lobule and higher RID scores for
regions within the superior temporal and inferior frontal cortex
(Figure 2A–C, bottom; Table S4). The 1q21.1 distal deletion car-
riers also exhibited lower subcortical volume in left thalamus and
right nucleus accumbens (Table S3) and lower RID score for the
left thalamus (Table S4). All significant RID score differences
survived adjustment for affection status. The interaction term
between carrier status and affection status was not associated
with the significant RID scores (Note 5 in Supplement 1; Table S5).
A subset of the significant RID scores were implicated in the
brain-cognition RID map (Figure S1 in Supplement 1). However,
we did not observe any significant interactions between carrier
status and cognitive ability on any of the significant RID scores
(Note 6 in Supplement 1; Table S6). The results yielded more
significant group differences in RID scores (i.e., 24) compared with
z scores adjusted for the global index between 15q11.2 BP1-BP2
deletion carriers and noncarriers (i.e., 13) (Supplementary Note 7
and Figure S3 in Supplement 1; Table S7).

1q21.1 Distal Duplication. The 1q21.1 distal duplication
carriers showed higher cortical surface area in the right pars
opercularis and right superior frontal gyrus and lower volume in
the right and left hippocampus compared with noncarriers
(Table S8). Using RID scores, no significant differences in the
ROIs were found (Table S9).

15q11.2 BP1-BP2 CNV

15q11.2 BP1-BP2 Deletion. The 15q11.2 BP1-BP2
deletion carriers showed lower cortical surface area in 10 ROIs
Biological Psy
using z scores (Figure 3A and B, top; Table S10) and higher
RID scores for the left frontal pole and right pars opercularis
surface area, but lower RID scores for the left and right pars
orbitalis surface area compared with noncarriers (Figure 3A–C,
bottom; Table S11). For cortical thickness, the 15q11.2 BP1-
BP2 deletion carriers showed higher cortical thickness in 30
regions using z scores (Figure 4A, B, top; Table S10). The RID
scores for cortical thickness were lower in regions within oc-
cipital and temporal regions and higher in motor and frontal
regions compared with noncarriers (Figure 4A–C, bottom;
Table S11). The 15q11.2 BP1-BP2 deletion carriers also
showed lower z scores for left caudate, right pallidum, and
right nucleus accumbens (Table S10). All significant RID scores
remained significant after adjustment for affection status. No
significant interactions between carrier status and affection
status (Table S12; Note 5 in Supplement 1) or between carrier
status and cognitive ability for the 15q11.2 BP1-BP2 deletion
carriers were observed (Table S13; Note 6 in Supplement 1).
The results yielded more significant group differences in RID
scores (i.e., 14) compared with z scores adjusted for global
index (i.e., 12) between 15q11.2 BP1-BP2 deletion carriers and
noncarriers (Note 7 and Figure S4 in Supplement 1; Table S14).

15q11.2 BP1-BP2 Duplication. The 15q11.2 BP1-BP2
duplication carriers showed lower cortical thickness in 11 ROIs
and higher right superior frontal cortical surface area using z
scores (Table S15), but showed no significant differences in
the ROIs using RID scores (Table S16).

DISCUSSION

To our knowledge, the current study is the first to identify
intraindividual variability differences in brain structure in CNV
carriers. Using the intraindividual standard deviation measure,
we observed higher variability in the regional effects for cortical
surface area in both 1q21.1 distal duplication and 15q11.2
BP1-BP2 deletion carriers and higher variability in the regional
effects for cortical thickness for the 15q11.2 BP1-BP2 deletion
chiatry January 15, 2024; 95:147–160 www.sobp.org/journal 151
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Figure 1. Cortical surface area comparison between 1q21.1 distal deletion carriers and noncarriers. (A) Top panel shows z scores, i.e., group differences in
regional cortical surface area. Bottom panel shows regional intra-deviation (RID) scores, i.e., group differences in regional cortical surface area that are scaled
to the individual’s own global index. Noncarriers are represented by gray lines, and 1q21.1 distal deletion carriers are represented by black lines. Blue dots
indicate significant differences. The insular cortex is included under the frontal cortex for visualization purposes. (B) Top panel shows the significant differences
in z scores, and bottom panel shows the significant differences in RID scores. Blue-red diverging maps represent the effect size. (C) Spatial distribution of all
the mean differences in RID scores. All values are shown regardless of significance. Yellow-purple diverging maps represent the direction of the mean dif-
ferences. Increased yellow intensity represents values that are less deviant than the overall global mean difference in cortical surface area, and increased
purple intensity represents values that are more deviant than the overall global mean difference in cortical surface area. The z scores and RID scores are based
on raw values adjusted for age, age2, sex, and intracranial volume on site harmonized data.
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carriers compared with noncarriers. Using RID scores, we
found that a subset of brain regions diverged significantly from
noncarriers for both the 1q21.1 distal and the 15q11.2 BP1-
BP2 deletion carriers. We also found a higher number of sig-
nificant regional differences using RID scores compared with
the conventional global covariation approach. The current re-
sults hold promise for identifying specific CNV-associated
brain profiles by targeting regional differences using an indi-
vidualized approach, which are overlooked in studies applying
conventional brain MRI measures.

In line with previous results (15), the 1q21.1 distal deletion
carriers showed lower global cortical surface area compared
with noncarriers. The observed differences in z scores indicate
widespread lower cortical surface area, whereas the RID
scores indicate that the cortical surface area in posterior and
primary sensory regions (i.e., lingual, pericalcarine, superior
parietal, isthmus of the cingulate gyrus) is less affected, and
frontal and association cortices (i.e., caudal middle frontal,
lateral orbitofrontal, rostral middle frontal, superior frontal
cortex) are more affected. Thus, the observed regional z score
152 Biological Psychiatry January 15, 2024; 95:147–160 www.sobp.or
group differences along lateral and medial parietal to lateral
inferior temporal and motor cortex appear to be largely
reflective of the global effect. A subset of the significant RID
scores (i.e., the superior temporal gyri and left supramarginal
gyrus cortical thickness and left lateral orbitofrontal and left
lateral superior temporal gyrus cortical surface area) were
associated with cognitive ability in noncarriers. However, the
effect sizes are low, and the current sample size of CNV car-
riers is too small to reliably detect such brain-cognition
associations.

The 15q11.2 BP1-BP2 deletion showed a higher global
cortical thickness compared with noncarriers, primarily
concentrated in the frontal cortex, recapitulating previously
reported group differences in cortical thickness (16). We
complement these findings by showing group differences in
RID scores, which indicates that the cortical thickness in
sensory cortices (i.e., cuneus and pericalcarine area) is less
affected, and the association cortices (i.e., rostral middle
frontal and superior frontal cortex) are more affected by the
deletion. The association cortices that show cortical thickness
g/journal
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Figure 2. Cortical thickness comparison between 1q21.1 distal deletion carriers and noncarriers. (A) Top panel shows z scores, i.e., group differences in
regional cortical thickness. Bottom panel shows regional intra-deviation (RID) scores, i.e., group differences in regional cortical thickness that are scaled to the
individual’s own global index. Noncarriers are represented by gray lines, and 1q21.1 distal deletion carriers are represented by black lines. Blue dots indicate
significant differences. The insular cortex is included under the frontal cortex for visualization purposes. (B) Top panel shows the significant differences in z
scores, and bottom panel shows the significant differences in RID scores. Blue-red diverging maps represent the effect size. (C) Spatial distribution of all the
mean differences in RID scores. All values are shown regardless of significance. Yellow-purple diverging maps represent the direction of the mean differences.
Increased yellow intensity represents values that are less deviant than the overall global mean difference in cortical thickness, and increased purple intensity
represents values that are more deviant than the overall global mean difference in cortical thickness. The z scores and RID scores are based on raw values
adjusted for age, age2, sex, and intracranial volume on site harmonized data.
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differences using RID scores are regions that underlie complex
cognitive functions (23–25) and may subserve the lower
cognitive performance in 15q11.2 BP1-BP2 deletion carriers
compared with control individuals (14,34).

Notably, some findings deviated from the interpretation of a
less affected sensorimotor cortex and a more affected asso-
ciation cortex. Both the 1q21.1 distal and the 15q11.2 BP1-
BP2 deletion carriers showed evidence for a relatively less
affected cortical surface area and cortical thickness, respec-
tively, in the left temporal pole. We also found that the cortical
thickness of the postcentral gyri, a primary somatosensory
region, is more affected in the 15q11.2 BP1-BP2 deletion
carriers. To speculate, this may be associated with the motor
delay observed in clinically affected 15q11.2 BP1-BP2 deletion
carriers (35). For cortical surface area in the 15q11.2 BP1-BP2
deletion carriers, we found inconsistent effects for frontal re-
gions: although we observed a relatively more different bilat-
eral pars orbitalis, we also found evidence for a less different
left frontal pole and right pars opercularis. Furthermore, we did
not find significant differences in RID scores in the 15q11.2
Biological Psy
BP1-BP2 duplication carriers or in the 1q21.1 distal duplication
carriers. The results complement previous findings of lower
effect sizes in brain measures for duplication versus deletion
carriers (6,7) and thus may support that carrying the deletion
distorts the anatomical relationships in the brain more than
carrying the duplication.

Global and frontal regional group differences in cortical
thickness are prominent brain features of several neuro-
developmental disorders, including autism spectrum disorder
(36) and schizophrenia (37). Thus, group differences in brain
structure may be confounded by individuals with neuro-
developmental or psychiatric disorders. Here, all the significant
RID score differences in 1q21.1 distal and 15q11.2 BP1-BP2
deletions survived adjustment for affection status, and there
were no interaction effects between carrier status and affection
status on the significant RID scores.

The current results implicate novel mechanisms in neuro-
development. Compelling candidates for the changes in the
1q21.1 distal CNV are the human specific NOTCH2NL genes,
which have been linked to the evolutionary expansion of the
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Figure 3. Cortical surface area comparison between 15q11.2 BP1-BP2 deletion carriers and noncarriers. (A) Top panel shows z scores, i.e., group dif-
ferences in regional cortical surface area. Bottom panel shows regional intra-deviation (RID) scores, i.e., group differences in regional cortical surface area that
are scaled to the individual’s own global index. Noncarriers are represented by gray lines, and 15q11.2 BP1-BP2 deletion carriers are represented by black
lines. Blue dots indicate significant differences. The insular cortex is included under the frontal cortex for visualization purposes. (B) Top panel shows the
significant differences in z scores, and bottom panel shows the significant differences in RID scores. Blue-red diverging maps represent the effect size. (C)
Spatial distribution of all the mean differences in RID scores. All values are shown regardless of significance. Yellow-purple diverging maps represent the
direction of the mean differences. Increased yellow intensity represents values that are less deviant than the overall global mean difference in cortical surface
area, and increased purple intensity represents values that are more deviant than the overall global mean difference in cortical surface area. The z scores and
RID scores are based on raw values adjusted for age, age2, sex, and intracranial volume on site harmonized data.
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human neocortex (38,39). NOTCH signaling is important for
outer radial glial cell self-renewal, which is thought to
contribute to cortical expansion (40). Deletion of the
NOTCH2NL genes in human cortical organoids yields smaller
organoids compared with control organoids (38), and
NOTCH2NL increases the number of cycling basal progenitors
in the mouse embryonic neocortex (41). Thus, NOTCH2NL
could yield a potential mechanistic link between the assumed
lower gene expression levels in 1q21.1 distal deletion carriers
and the lower cortical surface area, which is possibly important
for the expansion of frontal regions.

Among the 4 genes in the 15q11.2 BP1-BP2 loci (42),
CYFIP1 has gained considerable interest due to its association
with schizophrenia (43,44) and autism (45–47). Cyfip1 exhibits
high expression levels in the developing mouse brain (47).
CYFIP1 has also been linked to variation in cortical surface
area (48) as well as various cellular phenotypes, including
myelination (49), neurite length and branch number, cell size
(50), dendritic spine formation (51), and regulation of radial glial
cells (52). Notably, Cyfip1 haploinsufficiency reduces
154 Biological Psychiatry January 15, 2024; 95:147–160 www.sobp.or
myelination thickness in rats (49). Cortical thickness, as esti-
mated with MRI, has been suggested to be influenced by
myelination (53). Thus, the higher cortical thickness observed
in 15q11.2 BP1-BP2 deletion carriers may be due to altered
myelination in the brain, possibly with somatosensory cortex
being particularly sensitive to these alterations. Cyfip1 defi-
ciency has also been associated with functional connectivity
deficits in motor cortices as well as aberrant motor coordina-
tion in mice (54). Finally, it should be noted that the 1q21.1
distal and the 15q11.2 BP1-BP2 loci span several genes, and
genes within CNVs are likely to be involved in multifaceted
genetic interactions (55). More research is needed to identify
the causative biological mechanisms of the brain structural
phenotypes.

This study has strengths and limitations. We used an
intraindividual variability approach to examine brain metrics
that are related to an individual’s own interregional brain pro-
file. By examining metrics that consider the variation within
individuals, it is possible to map the heterogeneity and de-
viations in CNV carriers compared with noncarriers. However,
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Figure 4. Cortical thickness comparison between 15q11.2 BP1-BP2 deletion carriers and noncarriers. (A) Top panel shows z scores, i.e., group differences
in regional cortical thickness. Bottom panel shows regional intra-deviation (RID) scores, i.e., group differences in regional cortical thickness that are scaled to
the individual’s own global index. Noncarriers are represented by gray lines, and 15q11.2 BP1-BP2 deletion carriers are represented by black lines. Blue dots
indicate significant differences. The insular cortex is included under the frontal cortex for visualization purposes. (B) Top panel shows the significant differences
in z scores, and bottom panel shows the significant differences in RID scores. Blue-red diverging maps represent the effect size. (C) Spatial distribution of all
the mean differences in RID scores. All values are shown regardless of significance. Yellow-purple diverging maps represent the direction of the mean dif-
ferences. Increased yellow intensity represents values that are less deviant than the overall global mean difference in cortical thickness, and increased purple
intensity represents values that are more deviant than the overall global mean difference in cortical thickness. The z scores and RID scores are based on raw
values adjusted for age, age2, sex, and intracranial volume on site harmonized data.
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variability measures should be interpreted with caution, as
some effects on the brain may be so extreme that further de-
viations are unlikely to be observed. That is, CNVs may yield
large effects on brain structure, but only to a certain extent due
to biological constraints. Thus, we urge caution when inter-
preting intraindividual standard deviation in brain measures, as
ceiling and floor effects may bias the variability metrics. Still,
we identified structures that are significantly less different or
more different relative to the mean difference, indicating suf-
ficient variability in the individualized brain metrics. About one
half (1q21.1 distal) and two thirds (15q11.2 BP1-BP2) of the
carriers are derived from the UK Biobank, which has a healthy
volunteer bias (56), possibly yielding underestimations of brain
structural differences. However, this is somewhat counter-
balanced by the ENIGMA-CNV dataset that likely increases the
heterogeneity in the study sample (although some datasets are
likely to have similar bias toward healthy individuals as the UK
Biobank). Indeed, the variability observed in brain structure
within individuals underscores the heterogeneity between and
within individuals in the sample. Future studies with larger
Biological Psy
sample sizes are needed to examine the phenotypic hetero-
geneity observed in CNV carriers.

The results of the current study aid understanding of 1q21.1
distal and 15q11.2 BP1-BP2 CNV brain profiles by identifying
regional differences using intraindividual variability metrics,
which has the potential to give better insight into the neuronal
mechanisms in neurodevelopment and risk for psychiatric
diseases. We find evidence for regional differences beyond the
global differences in brain structure, where the spatial effects
partly support the hypothesis of less affected sensorimotor
cortex and more affected association cortex in both 1q21.1
distal and 15q11.2 BP1-BP2 deletion carriers.
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